Infusion Pumps: The Delivery Mechanisms for Your Compounded Products

PharMEDium Lunch and Learn Series

LUNCH AND LEARN

Infusion Pumps: The Delivery Mechanisms for Your Compounded Products

July 8, 2016

Featured Speaker: Seth Eisenberg, RN, ASN, OCN®, BMTCN™
Professional Practice Coordinator, Infusion Services
Seattle Cancer Care Alliance

CE Activity Information & Accreditation

ProCE, Inc. (Pharmacist and Tech CE)
1.0 contact hour

Funding: This activity is self-funded through PharMEDium.

It is the policy of ProCE, Inc. to ensure balance, independence, objectivity and scientific rigor in all of its continuing education activities. Faculty must disclose to participants the existence of any significant financial interest or any other relationship with the manufacturer of any commercial product(s) discussed in an educational presentation. Mr. Eisenberg has no relevant commercial and/or financial relationships to disclose.
Online Evaluation, Self-Assessment and CECredit

- Submission of an online self-assessment and evaluation is the only way to obtain CE credit for this webinar
- Go to www.ProCE.com/PharMEDiumRx
- Print your CE Statement online
- Live CE Deadline: August 5, 2016
- CPE Monitor
 - CE information automatically uploaded to NABP/CPE Monitor upon completion of the self-assessment and evaluation (user must complete the “claim credit” step)

Attendance Code
Code will be provided at the end of today’s activity
Attendance Code not needed for On-Demand

Ask a Question

- Submit your questions to your site manager.
- Questions will be answered at the end of the presentation.

Your question...?
Infusion Pumps: The Delivery Mechanisms for Your Compounded Products
PharMEDium Lunch and Learn Series

Resources

- Visit www.ProCE.com/PharMEDiumRx to access:
 - Handouts
 - Activity information
 - Upcoming live webinar dates
 - Links to receive CE credit

Infusion Pumps:
The Delivery Mechanisms for Your Compounded Products

Seth Eisenberg, RN, ASN, OCN®, BMTCN™
Professional Practice Coordinator, Infusion Services
Seattle Cancer Care Alliance

July 2016
Objectives

• Identify different types of infusion pumps
• Discuss the relationship between compounded IV medications and IV tubing
• Identify common difficulties experienced by healthcare providers working with infusion pumps
• Describe the role of “smart pumps” in enhancing patient safety

Why pumps?

• Gravity infusions have been successfully used for more than 100 years

Cosnett, JE (1989)
Gravity infusions are subject to error:

- Volume of IV bag and relative height of bag above patient
- Length of tubing
- Diameter of tubing
- Plastic “creep” under roller clamps
- Ambient temperature
- Gauge of the IV catheter
- Anatomic location of the IV catheter
- Size of the vein
- Patient movement / position
- Venous blood pressure

Macklin, D (1999); Cosnett, JE (1989); Phillip, JH (1992)

Bag volume and relative height

500mL 50mL 36”

More volume = more pressure

Macklin, D (1999); Cosnett, JE (1989); Phillip, JH (1992)
Tubing length and diameter

- Longer tubing = more resistance
- Smaller inside diameter = more resistance

\[
\text{FLOW} = \frac{\text{Resistance}}{\text{Pressure}}
\]

Macklin, D (1999); Cosnett, JE (1989); Phillip, JH (1992)

Plastic dynamics (creep and expansion)

- Compression of plastic under roller clamp changes over time
- Tubing expands as temperature rises, decreasing resistance

Cosnett, JE (1989); Phillip, JH (1992)
Venous variables

- Location and gauge of IV catheter
- Size of the vein
- Patient movement / position

- Venous blood pressure
 - Increased BP = increased resistance

Cosnett, JE (1989); Phillip, JH (1992)

Controllers versus pumps

- 1970s: the age of electronic controllers
 - Able to regulate flow using a drip sensor on tubing drip chamber to count each fluid drop
 - Unable to produce positive pressure

- Pumps produce positive pressure, which overcomes most (but not all) resistance
- Some early devices were controller-pump combinations

Milam, DA (1990); Phillip, JH (1992)
Infusion pump definition

“External infusion pumps are medical devices that deliver fluids, including nutrients and medications ... into a patient’s body in controlled amounts.

An external infusion pump is a medical device used to deliver fluids into a patient’s body in a controlled manner.”

White Paper: Infusion Pump Improvement Initiative, Accessed June 23, 2016; http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm205424.htm#background

Early pumps

Flow meter for counting drops

Flow meter for counting drops
Classifying pumps: broad categories

- Mechanical (elastomeric)
- Implantable
- Subcutaneous
- Electromechanical IV

Major players: the field is small

Pole Mounted Infusion Devices

- Carefusion/Alaris: Spun off from Cardinal. Current market leader
- B Braun: German company, with large European base
- Smith’s Medical: Syringe-only pump
- Hospira: Spun off from Abbott in 2004
- Baxter/Sigma: Purchased Sigma in 2012
- Zyno Medical: Chinese manufacturer, FDA approval 2007
Major players: the field is small

Ambulatory Infusion Devices

- Smith’s Medical (Purchased Sims Deltec, original manufacturer of CADD Prizm)
- Moog/Curlin (Purchased Curlin)
- B Braun (Markets CME Bodyguard ambulatory pump (Israel))
- Hospira (Markets Q Core Sapphire ambulatory pump (Israel))
- Zyno Medical

Pole-mounted pumps

- AC with limited battery backup
- Ability for sophisticated programming
 - Secondary piggyback infusions
 - Delay start
 - Dose titration
 - Automated flushing of tubing
- Can connect with EMR
- Accuracy rated at ± 5%
Ambulatory pumps

- Portability is top priority
- Battery operated
- Can infuse for 4-96 hours, depending on pump and IV rate
- Can be “locked” to prevent patient tampering
- Simple user interface
- Accuracy rated ± 5-7%*
- Uses include home TPN, hydration 5FU infusions, antibiotics, analgesia

*Sapphire accuracy ± 2.5%

Syringe pumps
Syringe pumps

Advantages
- Accuracy (± 2 - 5%)
- Can deliver small amounts of drug
- First choice for pediatric/neonatal
- Can infuse at very slow rates
- Inexpensive microbore tubing
- Low priming volume

Disadvantages
- Drug must be compounded for syringe
- Syringe size limited to ~3mL-60mL
- No piggyback option
- Must be positioned so that nothing interferes with syringe barrel travel

Syringe pump examples

- **Excelsior**
 - Battery operated
 - Inexpensive
 - Easy to use
 - Only 3 rate options (low, medium, high)
 - Rate based on size of syringe
 - Good choice for antibiotics, premedication, etc. – when volume is consistent and infusion time not critical
Syringe pump examples

• Programmable (e.g., Medfusion)
 • Extremely accurate (± 2%)
 • Can infuse at very slow rates
 • Programmable for mg/hr or mL/hr
 • Can be set for different syringe manufacturers
 • Available with “smart pump” software

PCA pumps

• Available as inpatient (pole mounted) or ambulatory
• Deliver metered amount of drug via patient-operated button, with timed lockout
• Can deliver bolus and continuous infusion
• Have security locks to prevent/decrease drug diversion
Pump mechanisms

- Two methods of moving fluid from bag to patient:
 - Peristaltic
 - System used on all IV pumps except two
 - Cassette membrane mechanism
 - System used on Hospira Plum pumps and B Braun Outlook

- Note that some pumps use a “cassette” for tubing securement (e.g. CADD), but are still considered peristaltic

Peristaltic versus cassette

Peristaltic:
- Inexpensive tubing
- Easy to prime
- Easy gravity infusion in emergency situations
- Height of primary bag above pump influences pump accuracy
- Requires positioning height of piggyback well above height of primary
- Unable to control both primary and piggyback independently

Cassette:
- Tubing more expensive
- More difficult to prime
- Pump accuracy not affected by bag height
- Piggyback bag can be same height as primary
- Potential to infuse both primary and piggyback concurrently
- Potential to remove air and prime piggyback without opening system
Peristaltic design

Two types: Can be rotary or finger actuated. Fluid is squeezed and pushed through the tubing

Cassette diaphragm design

• Membrane or diaphragm is built into cassette housing
• Allows pump to manage primary and secondary infusions independently
Cassette examples

Hospira Plum A+ and 360 B Braun Outlook ES 400 (single channel only)

Bag height liabilities

• Actual warning noted in a pump operating manual:

NOTE: To minimize or prevent fluid flow from the primary container during a Piggyback infusion (sympathetic flow), it may be necessary to lower the primary bag more than 8 inches or clamp off the primary tubing. Sympathetic flow increases significantly when the Piggyback rate is greater than 125 ml/hr, and clamping the primary tubing is recommended at rates greater than 125 ml/hr.
Tubing

- Most manufacturers require specific tubing that is usually not compatible with other brands.
- Design of tubing depends on type of pump mechanism.
- IV tubing can require as much as 25mL to prime.
 - Major consideration for pediatric population and patients in phase I research studies.
 - Volume must be taken into account when priming tubing for ambulatory pumps (may require additional volume to compensate).

- The smaller the IV bag (e.g., premix 50mL ceftriaxone), the more residual drug is in the tubing when the bag is empty.
 - Depending on tubing, 50% of drug can remain in the tubing when bag is empty.
- Appropriate flushing protocols must be in place.
- Special tubings are necessary for certain medications (e.g., drugs containing Kolliphor® EL [formerly Cremophor® EL]).

Gelderblom, H. et al 2001; Paclitaxel prescribing information, Bristol-Myers Squibb 2011
Primary versus secondary tubing setup

Pump evolution: complexity and recalls

- Pumps have progressed from simple “set rate only” to microprocessor-controlled programmable devices
- Allows programming of:
 - Rate
 - Volume
 - Time
 - Other options
Infusion pump hazards

• Increased complexity = increased opportunity for errors
• From 2005 through 2009, approximately 56,000 pump-related adverse events have occurred (injuries and deaths)
• 87 recalls due to safety issues
 • 14 posing a risk of serious harm or death

http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm205424.htm#causes

Infusion pump hazards: causes

• Software design
 • Alarms that fail to go off or trigger inappropriately (creates alarm fatigue)
 • Key bounce
• Hardware design and failures
 • Confusing data-entry steps
 • Breakage of commonly used components
 • Free-flow hazards
 • Air sensor issues
It’s a recall world

Alli (60 mg orlistat capsules) by GlaxoSmithKline: Recall - Product Tamper

(Posted 03/28/2014)

AUDIENCE: Consumer

ISSUE: GlaxoSmithKline (GSK) Consumer Healthcare is voluntarily recalling all alli-weight loss products, and Puerto Rico residents as the company believes that some packages of the product were tampered with in a manner that is not authentic. Alli.

GSK received inquiries from consumers in seven states about bottles of alli that contained tablets and did not alli. A range of tablets and capsules of various shapes and colors were reported to be found in bottles. Additionally, some bottles included the center carton were missing labels and had tamper-resistant seals that were not authentic. These tampered products were purchased in retail stores.

BACKGROUND: Alli is for weight loss in overweight adults, 18 years and older when used along with a reduced-calorie diet and regular exercise. The weight loss is achieved by blocking a portion of dietary fat from being absorbed in the intestines. Alli is packaged in a labeled bottle that has an inner foil seal imprinted with the words, “Sealed For Your Protection.”

Total recall

- FDA responsible for safety and recalls
- Every pump manufacturer has had pump recalls
- Some have required modifications and/or user warnings
- Some have required permanent removal from the marketplace
Class I FDA recalls

- **Class I recall**: a situation in which there is a reasonable probability that the use ... will cause serious adverse health consequences or death.

http://www.fda.gov/safety/recalls/ucm165546.htm

Baxter / Sabratek 6060

- Several major safety concerns
- Obsolescence in design made retrofitting impractical
- Removed from market in 2005
Baxter Colleague

• Defects dating back to 1999
• 206,000 distributed in US by 2005
• Problems included:
 • Battery swelling, power loss, data issues, software glitches
• FDA required remedies
• Lawsuit for fraudulent repairs
• On April 30, 2010, the FDA ordered Baxter to destroy all pumps

Lawsuits happen

• B Braun Infusomat recall for unexpected free-flow
• Device that had not been taken out of service was blamed for a morphine overdose resulting in patient death
• Legal action against VA system

Biomedical departments have a responsibility to notify users of recalls and to act accordingly.
The FDA gets more involved

• In 2010, FDA issued a white paper (Infusion Pump Improvement Initiative) to:
 • Require manufacturers to include additional design and engineering information as part of their premarket submissions
 • Conduct additional testing of their devices
 • Work with manufacturers to address problems
 • Assist in diagnosing software interface issues

White Paper: Infusion Pump Improvement Initiative, Accessed June 23, 2016; http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm205424.htm#background
Smart pumps

“... intravenous (IV) infusion devices that provide computerized dose error reduction software with IV therapy libraries and corresponding administration rate limits.”

- **Examples:**
 - Alaris “Guardrails”
 - Hospira “Mednet”
 - B Braun “DoseTrac”

- Smart pump usage in US is 77%

[Harding, AD (2013); Pedersen, CA (2012)]

Smart pumps

- **Prevent:**
 - Programming of rates outside allowable range for a given IV (drug library)
 - Use of incorrect units
 - Decimal point errors
 - Key bounce errors

- **Provide:**
 - Soft limits require confirmation prior to continuing, creating a “mental time out”
 - Hard limits cannot be exceeded
 - Automated reporting for QI
 - Communication with EMR

[Harding, AD (2013); Fairbanks, RJ (2014) www.ppmag.com]
Smart pumps

- Can be used with or without bar code medication administration (BCMA)

Harding, AD (2013)
Smart pumps

• When used without barcode medication administration
 • Nurse checks patient ID
 • Nurse checks medication label against order
 • Nurse finds medication in pump library and programs rate/volume
 • Infusion is started

Harding, AD (2013)

Smart pump challenges

• Expensive to implement with BCMA and EMR integration
 • Requires dedicated server, scanning equipment, Barcode printers, integration with pharmacy systems (e.g., DoseEdge™)
 • Custom drug “library” must be built
 • Library maintenance for new drugs added to formulary
 • Pharmacy and nursing education

Harding, AD (2013)
Not-so-smart pumps

- Nurses may be able to bypass library (a.k.a. “dumb pump mode”)
- Library may not be able to account for different rates depending on drug dose
- If BCMA not fully implemented:
 - Nurses could select wrong drug in library
 - Increased nursing time to initiate an infusion, which may impact overall compliance
- May not be compatible with EMR

Smart pump learning curve

- To be successful, smart pump implementation requires:
 - A multidisciplinary approach
 - Emphasis on a culture of safety within the organization
 - Sufficient resources (staff, $$, technology)
 - Annual education
Summary

• Electronic infusion devices (pumps):
 • Have evolved over the past 40 years
 • Can be used in a variety of settings
 • Can greatly reduce medication errors
 • Are subject to recalls
 • Do not all work and behave the same way
• Smart pump technology is becoming increasingly more important