Computer Support Systems and Technology in an Antimicrobial Stewardship Program

Slides Prepared By:
Elizabeth Dodds Ashley, PharmD, MHS, FCCP, BCPS
University of Rochester Medical Center
Rochester, NY
Rachel Chambers, PharmD, BCPS
Henry Ford Hospital
Detroit, MI
Suzanne Wortman, BS, PharmD, BCPS
DuBois Regional Medical Center
DuBois, PA
ACPE Number: 0072-9999-10-136-L04-P Knowledge-based

Elizabeth Dodds Ashley’s Disclosures

- Pfizer & Ortho-McNeil: consulting
- Merck: speaker’s bureau member

Objectives

- Discuss the role of computerized physician order entry in a stewardship program
- Identify the different clinical decision support systems and their limitations
- Describe information technology specialist role on the antimicrobial stewardship team
The Role of Computerized Support Systems in Antimicrobial Stewardship

• What the guidelines say...
 – Healthcare information technology in the form of electronic medical records (A-III), computer physician order entry (B-II) and clinical decision support (B-II) can improve antimicrobial decisions through the incorporation of data on patient-specific microbiology cultures and susceptibilities...
 – Computer-based surveillance can facilitate good stewardship by more efficient targeting of antimicrobial interventions, tracking of antimicrobial resistance patterns and identification of nosocomial infections and adverse events (B-II)

Clinical Decision Support

• Definition: systems that intelligently filter clinical knowledge and patient-related information
• Six key functions:
 – Alerting - Critiquing
 – Interpreting - Diagnosing
 – Assisting - Managing

What can clinical decision support do?

• Based on the literature:
 – Increasing influenza vaccinations
 – Improving peri-operative antibiotic delivery time
 – Reduction in post-operative antibiotic use
 – Improve dosing (intra-operatively & in patients with organ dysfunction)
 – Facilitate IV to oral conversion
Clinical Decision Support & Clinician Interaction

- Passive:
 - Rely on input from end users
 - Clinicians must seek the help to receive it
 - Depends on correctly answering the questions
- Active:
 - “knowledge-embedded” systems
 - Automatically communicate with clinicians
 - Act in real time to provide guidance without asking for it

Types of Computerized Systems

- Reports from existing pharmacy computer systems
- Computerized Provider Order Entry (CPOE)
- Integrated systems
 - Home-grown technology
 - Commercially available programs

Using What you Have

All commercially available pharmacy systems have some form of reporting capability

- Pros:
 - Can be implemented nearly immediately
 - Pharmacy users familiar with system/ minimal training needed
 - Best used as a tool to identify patients for review by stewardship team
 - Essentially FREE!

- Cons:
 - Traditionally, no link with other hospital systems
 - Not capable of tying together micro or other laboratory data with drug use
 - Use mostly limited to identifying patients on drug or combinations of agents
 - Many not able to document activities in usable format
Pros:
- Allows ability to collect additional data at the point of order entry
- Can remind providers of guidelines at order entry
- Can flag dose changes, allergies etc.
- Additional data allows more thorough review at time of dispensing

Cons:
- Programming functionality can be a challenge
- Electronic reporting of order data not always easy to obtain

CPOE Example: Antibiotic Indication
- At the time of order entry, additional data can be collected from providers
- Can be a tool on multiple levels:
 - Core measures + stewardship
 - Allows additional interventions

CPOE Example: Pre-Defined Indications
- Prophylaxis Indications
 - Surgical - Pre-op
 - Surgical - Post-op
 - Non-surgical prophylaxis
- Treatment Indications
 1. Bloodstream
 2. Bone and joint
 3. Central nervous system
 4. Diabetic foot
 5. Empiric therapy - febrile neutropenia
 6. Empiric therapy - unclear source
 7. Intraabdominal
 8. Pneumonia - community-acquired
 9. Pneumonia - Other
 10. Skin/soft tissue
 11. Urinary tract
 12. Other (followed by prompting for free-text response)
Integrated Systems for Clinical Decision Support

- Pulls data relevant patient-specific data from multiple systems
 - Or, in the case some electronic medical records, one system houses all information
- Includes sophisticated alert and reporting capabilities combining pharmacy and microbiology data

Desirable Characteristics of Clinical Decision Support Programs

- Vaccination reminders
- Catheter use alerts
- Drug-bug mismatch alerts
- Drug-spectrum alerts
- Timing of therapy alerts
- Prophylaxis timing alerts
- Recommend consultation as appropriate
- Drug dose alerts
- IV to PO switch
- Therapy recs for confirmed infection
- Automatic prophy recs
- Automated antibiograms
- Empiric recs
- Determine colonization
- Target-drug alerts
- Duration of therapy
- Track and alert emerging resistance

Comparing Systems

<table>
<thead>
<tr>
<th>Home-grown</th>
<th>Commercially Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pros:</td>
<td>Pros:</td>
</tr>
<tr>
<td>- You build exactly what you want</td>
<td>- Can be available more quickly</td>
</tr>
<tr>
<td>- Guarantee it will work with your systems</td>
<td>- Less maintenance than home-grown system</td>
</tr>
<tr>
<td>Cons:</td>
<td>Cons:</td>
</tr>
<tr>
<td>- Time available to build</td>
<td>- Varying degree of customization available</td>
</tr>
<tr>
<td>- Resources to support</td>
<td>- More costly</td>
</tr>
<tr>
<td>- Technical / maintenance issues, ongoing commitment</td>
<td>- Customer service-vendor dependent</td>
</tr>
</tbody>
</table>
Examples of Home-Grown Programs

Commercially Available Systems

- Abx Alert by ICNet
- Guardian by Atlas Development Corp.
- BD Protect
- CareFusion MedMined
- Cerner Corporation
- epiQuest
- Quality Compass / Advisory Board

- RL Solutions
- SafetySurveillor by Premier
- Sentri 7 by PharmayOne
- TheraDoc Hospira Inc.
- VigiLanz Dynamic Monitoring System
Commercial Programs: Data Sources

- All systems combine antimicrobial use with microbiology laboratory data
- These considerations especially important for institutions without integrated medical record
- Data sources that need to be considered:
 - Radiology
 - Pyxis
 - CPOE integration
- Another important consideration is site of data storage

Commercial Programs: Interventions

- Consider what you already have available in pharmacy systems

<table>
<thead>
<tr>
<th></th>
<th>Med-Mined™</th>
<th>Quality Compass™</th>
<th>Safety Surveillor™</th>
<th>Sentri7®</th>
<th>Theradoc®</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV to PO</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes – if built</td>
<td>Yes</td>
</tr>
<tr>
<td>Drug-bug mismatch</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Dosing rules</td>
<td>Yes, if built</td>
<td>Not yet</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Duplicate therapy</td>
<td>Yes</td>
<td>Not yet</td>
<td>Yes</td>
<td>Yes–if built</td>
<td>Yes</td>
</tr>
<tr>
<td>Drug interaction</td>
<td>Yes</td>
<td>Not yet</td>
<td>Future</td>
<td>Yes–if built</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Commercial Programs: Documenting Capability

- Intervention documentation remains a challenge in many pharmacy systems
- External validity for stewardship results are often difficult, currently, benchmarking is for HAIs

<table>
<thead>
<tr>
<th></th>
<th>Med-Mined™</th>
<th>Quality Compass™</th>
<th>Safety Surveillor™</th>
<th>Sentri7®</th>
<th>Theradoc®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document interven- tions</td>
<td>Yes</td>
<td>?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>External bench- marking</td>
<td>Yes</td>
<td>?</td>
<td>Yes vs. NHSN</td>
<td>No</td>
<td>Yes vs. NHSN</td>
</tr>
</tbody>
</table>
SIDP Survey Summary

- Antimicrobial use data is most often utilized to assess and monitor cost at facility level
- Data source utilized is often pharmacy purchase data derived from pharmacy or hospital administrative databases
 - Data often imported into Excel
- DDD/patient volume is most frequently utilized metric
- Lack access to data for external benchmarking but have great interest in receiving these data

Benchmarking Antimicrobial Usage

- Comparisons of intra-facility antimicrobial usage
 - Risk-adjusted
 - Standardization in numerator and denominator
- Provides direction for further evaluation and potential areas of quality improvement
 - Does not assess appropriate use

Benchmarking from the CDC: National Healthcare Safety Network (NHSN)

- Secure, internet-based surveillance system
- Currently enrolling all types of healthcare facilities
- Purpose includes:
 - Collect data to estimate magnitude of HAIs/ADRs
 - Conduct research

www.cdc.gov/nhsn/about.html
Medication-associated Module

Antimicrobial Use and Resistance (AUR)

Antimicrobial Use-Pharmacy Option

Antimicrobial Resistance-Microbiology Option

AUR Module: Pharmacy

2006-2009: Manual Entry

Commercial Programs: Reporting

- The output of your program will be as important as the input for justification

<table>
<thead>
<tr>
<th></th>
<th>MedMined™</th>
<th>Quality Compass™</th>
<th>Safety Surveillor™</th>
<th>Senti+™/®</th>
<th>TheraDoc™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routine</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Custom</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Antibiotic</td>
<td>Yes</td>
<td>Yes</td>
<td>Future</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Export reports</td>
<td>Excel/Access</td>
<td>Excel/PowerPoint</td>
<td>Excel Internal Excel/PowerPoint</td>
<td>Excel Internal Excel/PowerPoint</td>
<td>Excel Internal Excel/PowerPoint</td>
</tr>
</tbody>
</table>
Commercial Programs: Cost Reporting

- Cost as a metric of stewardship success remains controversial
- Justification for many of these commercially available programs will be based on pharmacy cost savings
- Types of savings that might be calculated:
 - IV to PO
 - Decreased infections (using estimated cost of additional infection)
 - Decreased length of stay questions

Desirable Characteristics for Infection Control/Prevention

- Isolation alerts
- Precaution reminders
- Health care associated infection alerts
- Patient location tracking
- Population location tracking
- Target-organism alerts
- Handwashing reminders
- On-line infection control information

Key Steps to Implementation of Computerized Support

- Gain administrative support for computerized decision support
- What to expect during implementation?
- Establishing workflow
- End user education
- Measuring success of the project
Gain administrative support

• Establish “the gap” in practice
 – Joint Commission National Patient Safety Goal
 07.03.01: Implement evidence-based practices to prevent health care-associated infections due to multidrug-resistant organisms in acute care hospitals
 – Published literature
 – Internal medication use evaluation data
 – Other available internal data

• Present “the gap” and ask for support from key leaders
 – Director of pharmacy
 – Infection control
 – Quality and safety
 – Microbiology
 – Hospital administration

• Develop a proposal/ business plan
 • Key elements include:
 – Expected progress with computerized support
 – Describe the potential benefits to your institution:
 • Improved patient quality and safety
 • Reduced antimicrobial expenditures
 • Decreased C. difficile rates
 • Reduction in bacterial resistance rates
 • Other hot button issues in your practice
 – Hardware, software, and implementation cost estimates
 – Timeline
What to expect during implementation

- Establish your role in implementation
 - Clinical champion (extensive involvement throughout the entire process)
 - Super user (moderate involvement during training phase of implementation)
 - End user (minimal or no involvement in implementation)

- Hardware and software sizing and installation performed by information technology (IT) experts
 - Clinical champion often collaborates with IT to make decisions on details to assist in sizing and programming
 - Anticipated size of end user group?
 - Acceptable backup method if system goes down
 - Which interfaces are necessary? (i.e. radiology, microbiology, pharmacy)
 - What information needs to come across interfaces?
 - Customization

- Data validation
 - May be time consuming!
 - Clarify how extensive is the validation process needed for each interface?
 - Who will perform this validation?

- Support
 - Establish who will provide IT support for the system
 - i.e. user name, password requests, lockouts, basic customization, programming, and maintenance

- Training
 - On-site
 - Remote (webinar or teleconference)
 - Common approach: train super users who perform subsequent training of end users

Establishing workflow

- Implementation of a new computerized support system is an opportunity for clinical innovation!

- Establish a clear leader or leaders for the project
 - Create a timeline and track your progress
 - Develop a workgroup of key leaders to brainstorm ideas for best practices
 - What are the institutional and departmental priorities?
 - Who are the end users and what are their needs on a daily basis?
What Can These Programs Do for You: Daily Routine Example

- **Dashboard**
 - Review alerts per unit
 - Action alert (multiple actions possible)
 - Comments
 - Manual entry
 - Multiple user access / transparency in documentation
 - Longitudinal data
 - Print Notes function

Advisor Dashboard
Barriers to Acceptance

- Historical:
 - Lack of using standard infrastructure (HL-7)
 - Slow adoption of clinical terminology
 - Cost of implementation
 - Health care IT infrastructure for transaction processing
 - Perceived increase in liability
 - Suboptimal models for maintaining
 - Developed academically, not transferrable

Additional Stumbling Blocks to Anticipate

- Training time
- Full commitment of proposed resources
 - Especially IT component
- Resistance to workflow changes
 - Perhaps more common with infection control/prevention
- Communication of changes
• Thank you for your attention.
• We would like to thank the following additional contributors to this presentation:
 – Susan Davis, PharmD