Optimizing Infectious Diseases Outcomes in Antimicrobial Stewardship Programs

Harrison Bachmeier, PharmD, BCPS
Clinical Pharmacist
Lee Memorial Health System
Fort Myers, FL

Disclosures

- Dr. Bachmeier has NO financial disclosures
Objectives

- Discuss the impact of antimicrobial therapy and resistance on clinical outcomes
- Review components of antimicrobial stewardship programs and opportunities to improve patient care
- Recognize dosing strategies to optimize antimicrobial pharmacodynamics
- Describe the development of evidence-based guidelines to implement clinical pathways
- Outline novel concepts of antibiotic heterogeneity to address gram negative resistance

Novel Drug Mechanism Targets are Lacking

Critical Balance of Antibiotic Use

- **Importance of appropriate empiric therapy**
 - Mortality increases when initial therapy is inappropriate

- **Effect of broad-spectrum therapy on resistance**
 - Resistance increases when broad-spectrum agents are overused
 - Resistance has a negative impact on outcomes

Inadequate Treatment Leads to Poor Outcomes

- **Impact of Empiric Antibiotic Treatment on Mortality**

 - Bacteremia
 - Community-acquired Bacteremia
 - S. aureus Bacteremia
 - Ventilator-acquired Pneumonia

 - Appropriate Initial Treatment
 - Inappropriate Initial Treatment

 - p < 0.001
 - p < 0.05
 - p < 0.02
 - p < 0.04

Antibacterial Resistance is Increasing

Antimicrobial Resistance Among Staphylococcus aureus, enterococi and Pseudomonas aeruginosa in the United States

Antibiotic Resistance Leads to Poor Outcomes

- Non-urinary tract isolates of ESBL Klebsiella and E. coli vs non-ESBL infections
- Length of stay
 - 21 days vs. 11 days (p=0.006)
- Clinical success
 - 48% vs. 86% (p=0.027)

ESBL = extended spectrum beta-lactamase

Lee, et al. Inf Cont Hosp Epi 2006;27:1226-32
Antibiotic Resistance Leads to Poor Outcomes

- **MRSA vs. MSSA bacteremia**
 - Clinical Failure
 - 59.6% vs. 33% ($P<0.001$)
 - Length of Stay (infection-related)
 - 20.1 vs. 13.7 days ($P<0.001$)
 - Mortality (infection-related)
 - 30.6% vs. 15.3% ($P=0.001$)

Lodise T. Diag Microbiol Inf Dis 2005;52.

Guiding Antimicrobial Principles

- **For severe infections, start broad**
 - If you get it wrong, you’re in trouble
- **Get it in the patient quickly**
- **De-escalation of therapy is a necessity1,2**
 - The right drug is always the narrowest spectrum agent that produces a successful response and causes the fewest significant adverse effects and the least collateral damage
- **Treat for the most appropriate length of time, then stop**
- **Each of these can be addressed through collaborative efforts**

Goals of Stewardship

- **Primary goals**
 - Improve clinical outcomes
 - Prevent adverse drug events
 - Limit the selection of pathogenic organisms
 - Reduce the incidence of antimicrobial resistance

- **Secondary goals**
 - Reduce healthcare related costs without adversely affecting outcomes

Targeted Outcomes in Stewardship Programs

- **Patient specific**
 - Improved survival
 - Decrease length of hospital (and/or ICU) stay

- **Pharmacodynamic**
 - Target dose attainment

- **Microbiologic**
 - Increased drug/class susceptibility
 - Decreased *clostridium difficile* infections
Antimicrobial Stewardship Team Members

- Hospital Epidemiology & Infection Control
- Medical Information Systems
- Microbiology Laboratory
- Hospital Administration
- Infectious Diseases Dept.
- Antimicrobial Stewardship Program Directors
 - ID Pharm.D
 - ID Physician
- Physicians; Hospitalists Critical Care
- Chair, P&T Committee
- Clinical Pharmacists

Comprehensive Antimicrobial Stewardship is Multifaceted

- **Active core strategies**
 - Prospective audit with intervention and feedback
 - Formulary restriction and preauthorization

- **Supplemental strategies**
 - Education
 - Guidelines and clinical pathways
 - Antimicrobial order forms
 - Antibiotic cycling
 - Dose optimization
 - De-escalating/streamlining therapy
 - Conversion from parenteral to oral therapy

Pharmacist Role in Improving Antimicrobial Outcomes

Clinical outcomes in a randomized controlled trial comparing the antimicrobial stewardship program to usual practice

- **RR 2.8 (2.1-3.8)**
- **RR 1.7 (1.3-2.1)**
- **RR 0.2 (0.1-0.4)**

Therapy

The University of Kentucky Experience

- Multidisciplinary antimicrobial control program implemented in 1998
- Initial focus on formulary management and restriction
 - Cephalosporins
 - Vancomycin

Antimicrobial drug expenditures, $

- **Projected**
- **Actual**

Martin CA et al. AJHP 2005;62(7):732-738
Impact of Antimicrobial Stewardship on C. difficile Episodes

Improving Outcomes Through Thoughtful Dosing and Administration

- Maximizing the benefit of a drug requires optimizing the pharmacodynamic properties of the drug
 - Most benefit is in the sickest patients or those with risk factors for MDR organisms w/higher MIC values
- Crucial considering our limited armamentarium
- With the lack of new drugs for MDR organisms, being strategic with dosing and administration is more important than ever
Optimal Pharmacodynamic Parameters Differ Among Antibiotics

Extended Infusions Optimize Beta-Lactam Pharmacodynamics

Comparison of time above the MIC among various piperacillin doses

Probability of piperacillin-tazobactam target attainment of 50% $T_{\geq}\text{MIC}$

Extended Infusion Dosing Strategies

- Unnecessary to exceed MIC for a 24-hour interval in most cases

- Target $\%ft > MIC$ for β-Lactam antibiotics
 - Penicillins – 50% $ft > MC$
 - Cephalosporins – 60-70% $ft > MC$
 - Carbapenems – 40% $ft > MC$

- Results of PK/PD experiments support extended-infusion dosing regimens for β-lactam antibiotics

Improved Survival Associated with Extended Infusion PTZ

The use of Clinical Guidelines to Improve Outcomes

- **IDSA Stewardship Guidelines Statements**
 - Multidisciplinary development of evidence-based practice guidelines incorporating local microbiology and resistance patterns can improve antimicrobial utilization (AI).
 - Guideline implementation can be facilitated through provider education and feedback on antimicrobial use and patient outcomes (AIII).
- **Incorporate national guidelines when possible**
- **An additional crucial step is to tailor the pathway based on microbiology, hospital formulary, etc.**
- **Antimicrobial selection is only one component (diagnostics, etc.)**

Get With the Guidelines

- **Multidisciplinary development of evidence-based practice guidelines incorporating local resistance patterns**
- **Provides practitioners education and feedback**

<table>
<thead>
<tr>
<th></th>
<th>Pre-VAP Clinical Guideline</th>
<th>Post-VAP Clinical Guideline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequate initial therapy</td>
<td>48%</td>
<td>94%</td>
</tr>
<tr>
<td>Duration of therapy</td>
<td>14.8 days</td>
<td>8.6 days</td>
</tr>
<tr>
<td>VAP recurrence</td>
<td>24%</td>
<td>8%</td>
</tr>
</tbody>
</table>

Ibrahim EH et al. *Crit Care Med* 2001 29;1109-15
VAP = ventilator associated pneumonia
Additional Examples for Guideline Development

- **Community-acquired pneumonia**
 - 20 hospitals randomized
 - Decreased LOS of 1.7 days
 - 4.4 vs 6.1 days; \(p = 0.04 \)
 - Fewer IV therapy days
 - 4.6 vs 6.3 days; \(p = 0.01 \)
 - No increase in complications or readmission

- **General ICU infections**
 - 77% reduction in antimicrobial use
 - 30% reduction in overall cost of care
 - Decreased mortality
 - 20% vs 5.6%; \(p = 0.02 \)

Moving From “Restriction” to “Facilitation”

- **Martin CA, Armitstead JA, Mynatt RP, and Hoven AD** *AJHP* 2011; 68:109-10
 - Programs with a heavy-handed restriction approach may inadvertently be doing a disservice to patients
 - We should be focusing more on getting the right drug to the patient rather than merely restricting drugs
 - The only dose of a drug proven to save lives is THE FIRST ONE
Timeliness of Antibiotics Affects Survival in Sepsis

- Delays in effective antimicrobial therapy increases mortality with each passing hour

<table>
<thead>
<tr>
<th>Time from Hypotension Onset, (hrs)</th>
<th>Survival fraction</th>
<th>Mortality Risk and Time to Effective Antimicrobial Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td>Odds ratio of death (95% confidence interval)</td>
</tr>
<tr>
<td>within 1 hour</td>
<td>0.8</td>
<td>10</td>
</tr>
<tr>
<td>within 6th hour</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>0.02</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>0.04</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>0.06</td>
<td>0.6</td>
<td>1</td>
</tr>
<tr>
<td>0.08</td>
<td>0.8</td>
<td>1</td>
</tr>
<tr>
<td>0.10</td>
<td>1.0</td>
<td>1</td>
</tr>
</tbody>
</table>

Electronic Sepsis Bundle

- **Electronic order set**
 - Can be initiated by any healthcare provider that recognizes sepsis/septic shock

- **Automated notification to key personnel**
 - Rapid response team
 - Hospital Operations Administrator
 - (for bed transfer, nursing ratio, etc.)
 - Materials management
 - Clinical Pharmacist (PharmD on-call)

- **Septic Shock Carts**
 - Deployed to key areas
 - Contains all supplies necessary for initial resuscitation
Initial Impact of Electronic Sepsis Bundle on Antimicrobial Timing

![Graph showing the impact of electronic sepsis bundle on antimicrobial timing.]

Pharmacist Bedside Response in Initial Sepsis

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>PharmD Sepsis Response (n=49)</th>
<th>Control (n=59)</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Outcome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotics administered within 1 hour, n (%)</td>
<td>41 (77.5)</td>
<td>11 (23.7)</td>
<td>22.4 (7.5-69)</td>
</tr>
<tr>
<td>Secondary Outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAP ≥ 65 mmHg within 6 h</td>
<td>43 (87.7)</td>
<td>45 (76.3)</td>
<td>2.2 (0.7-7.7)</td>
</tr>
<tr>
<td>CVP ≥ 8 mmHg within 6 h</td>
<td>26 (53.1)</td>
<td>19 (32.2)</td>
<td>2.4 (1.0-5.6)</td>
</tr>
<tr>
<td>Death</td>
<td>24 (48.9)</td>
<td>32 (54.2)</td>
<td>0.5 (0.2-1.2)</td>
</tr>
</tbody>
</table>

Delayed Antifungal Therapy Leads to Increased Mortality

Timing of antifungal therapy and mortality in patients with candidemia

The Candida Score: A Risk Stratification Tool

- Simple point-based bedside scoring tool
- Points
 - Multifocal Candida colonization (1)
 - Surgery on ICU admission (1)
 - TPN 1)
 - Severe sepsis (2)
- Scores >2.5 have 7x higher likelihood of invasive Candidiasis

Candida Isolates in UKMC ICU Patients

<table>
<thead>
<tr>
<th>Organism</th>
<th>ICU</th>
<th>CT</th>
<th>1MED</th>
<th>1THC</th>
<th>2BUR</th>
<th>2NS</th>
<th>2PIC</th>
<th>25IC</th>
<th>3BMC</th>
<th>4NIC</th>
<th>4NCU</th>
<th>4PIC</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candida albicans</td>
<td>24</td>
<td>35</td>
<td>26</td>
<td>26</td>
<td>7</td>
<td>33</td>
<td>7</td>
<td>21</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>13</td>
<td>211</td>
</tr>
<tr>
<td>Candida guilliermondii</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Candida krusei</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Candida lipolytica</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Candida lusitania</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Candida parapsilosis</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Candida tropicalis</td>
<td>4</td>
<td>2</td>
<td>12</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>39</td>
</tr>
<tr>
<td>Candida glabrata</td>
<td>19</td>
<td>10</td>
<td>19</td>
<td>13</td>
<td>4</td>
<td>12</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>Grand Total</td>
<td>52</td>
<td>52</td>
<td>63</td>
<td>47</td>
<td>17</td>
<td>60</td>
<td>12</td>
<td>34</td>
<td>19</td>
<td>12</td>
<td>5</td>
<td>23</td>
<td>394</td>
</tr>
</tbody>
</table>

Projected fluconazole susceptibility:
- C. albicans: 175/175 (98%)
- C. glabrata: 87/60 (69%)

Susceptibility based on surveillance data: Pfaller, et al. JCM 07

Candida Score

Yes (Start micafungin)

No (No antifungal therapy)

<table>
<thead>
<tr>
<th>Cx (-), pt improves (cont. micafungin)</th>
</tr>
</thead>
</table>

C x (-), no improvement (DC micafungin)

C x (+), Flu-S species (change to flu)

C x (+), Flu-R species (cont. micafungin)

Continue to evaluate

Cx = culture
Pt = patient
DC = discontinue
Flu = fluconazole
S = susceptible
R = resistant
Antimicrobial Cycling

- Scheduled removal and substitution of a specific antimicrobial for a given time period to prevent or reverse the development of resistance
- Aimed to minimize selective pressures
- Difficult to fully implement due to concerns regarding allergies, adverse effects, guideline recommendations
- Insufficient data to support routine use
 - Leads to resistance patterns cycling

Promoting Antibiotic Heterogeneity Throughout Healthcare Systems

- Novel concept of antibiotic mixing throughout a cohort to limit antimicrobial selective pressures
 - Measured by antibiotic heterogeneity index (AHI)
 - Goal of >0.85 (complete heterogeneity = 1)
- Prospectively favor or restrict antibiotic classes based on recent use and changes in resistance

STRATEGIC ANTIBiotic HETEROGENEITY REDUCES Gram NEGATIVE RESISTANCE

<table>
<thead>
<tr>
<th></th>
<th>Pre-establishment period</th>
<th>PAMS</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistant P. aeruginosa</td>
<td>8.9%</td>
<td>3.8%</td>
<td><0.001</td>
</tr>
<tr>
<td>Multidrug-resistant P. aeruginosa and A. baumannii</td>
<td>1.7%</td>
<td>0.5%</td>
<td><0.001</td>
</tr>
<tr>
<td>Metallo-B-lactamase organisms</td>
<td>1.2%</td>
<td>0.3%</td>
<td><0.001</td>
</tr>
<tr>
<td>ESBL organisms</td>
<td>2.2%</td>
<td>2.4%</td>
<td>NS</td>
</tr>
</tbody>
</table>

 AN HONEST ASSESSMENT OF WHERE ANTIMICROBIAL STEWARDSHIP STANDS

- Does a good job of promoting the idea that antimicrobial use matters to society (at least the inpatient society)
 - *Nobel causes*
- Does a poor job of talking about community antibiotic use
 - *Not to mention the use in agriculture*
- Beginning to address use at the level of individual patients (timing, selection, etc.)
- We need to be thinking about ways to win wars, not individual battles
Optimizing Infectious Diseases Outcomes in Antimicrobial Stewardship Programs

Harrison Bachmeier, PharmD, BCPS
Clinical Pharmacist
Lee Memorial Health System
Fort Myers, FL